16 research outputs found

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Loss Allocation in Joint Transmission and Distribution Peer-to-Peer Markets

    Full text link
    Large deployment of distribute energy resources and the increasing awareness of end-users towards their energy procurement are challenging current practices of electricity markets. A change of paradigm, from a top-down hierarchical approach to a more decentralized framework, has been recently researched, with market structures relying on multi-bilateral trades among market participants. In order to guarantee feasibility in power system operation, it is crucial to rethink the interaction with system operators and the way operational costs are shared in such decentralized markets. We propose here to include system operators, both at transmission and distribution level, as active actors of the market, accounting for power grid constraints and line losses. Moreover, to avoid market outcomes that discriminate agents for their geographical location, we analyze loss allocation policies and their impact on market outcomes and prices.Comment: Submitted to "IEEE Transactions on Power Systems" on January 15, 2020 - Revised on May 6, 2020 and on August 6, 2020 - Accepted on September 13, 202

    Exogenous Cost Allocation in Peer-to-Peer Electricity Markets

    Get PDF
    International audienceThe deployment of distributed energy resources, combined with a more proactive demand side management, is inducing a new paradigm in power system operation and electricity markets. Within a consumer-centric market framework, peer-to-peer approaches have gained substantial interest. Peer-to-peer markets rely on multi-bilateral negotiation among all agents to match supply and demand. These markets can yield a complete mapping of exchanges onto the grid, hence allowing to rethink the sharing of costs related to the use of common infrastructure and services. We propose here to attribute such costs through exogenous network charges in several alternative ways i.e. uniformly, based on the electrical distance between agents and by zones. This variety covers the main grid physical and regulatory configurations. Since attribution mechanisms are defined in an exogenous manner to affect each P2P trade, they eventually shift the market issue to cover the grid exploitation costs. It can even be used to release the stress on the grid when necessary. The interest of our approach is illustrated on a test case using the IEEE 39 bus test system, underlying the impact of attribution mechanisms on trades and grid usage

    Peer-to-peer electricity markets in power systems

    No full text
    Le déploiement de ressources énergétiques distribuées, combiné à une gestion plus pro-active de la demande et à l'intégration de systèmes de gestion d'énergie, fait entrer l'exploitation des systèmes électriques et des marchés de l'électricité dans un nouveau paradigme. En partie liés à leur structure décentralisée, les marchés dits pair-à-pair ont gagné un intérêt considérable. Les marchés pair-à-pair reposent sur des négociations bilatérales entre les agents pour faire correspondre l'offre et la demande. De plus, ils peuvent cartographier l’ensemble des échanges possibles, ce qui permet de repenser ces interactions avec le réseau.Ces travaux de thèse traitent de trois défis majeurs dont la résolution est essentielle avant d'envisager le passage à des applications réelles : (i) le passage à l'échelle pour gérer un nombre croissant d'acteurs et de ressources distribués, (ii) le respect des contraintes du réseau électrique, et (iii) la résilience du marché à la présence d'agents stochastiques. Une analyse de complexité a permis de montrer que le passage à l’échelle des marchés pair-à-pair et le mécanisme de résolution peut être renforcé par trois améliorations réduisant les complexités algorithmiques et structurelles. Pour le respect des contraintes réseau, le manuscrit propose d’introduire des redevances qui seraient liées à l’utilisation du réseau électrique. Deux approches sont considérées pour déterminer ces redevances réseau. La première, exogène, exige que le gestionnaire de réseau les fournisse a priori avant le début des négociations. Dans la seconde, le gestionnaire de réseau actualise les redevances réseau de manière endogène à chaque itération pour mieux tenir compte de l'état actuel du réseau. Enfin, les prévisions de production et de consommation des agents stochastiques sont mieux prises en compte par la création d’un marché pair-à-pair de l'énergie et des capacités de réserve, pour corriger un éventuel déséquilibre de puissance due à des erreurs de prévision.The deployment of distributed energy resources, combined with a more proactive demand side management and energy management systems, is inducing a new paradigm in power system operation and electricity markets. Within a consumercentric market framework, peer-to-peer approaches have gained substantial interest. Peer-to-peer markets rely on multi-bilateral negotiation among all agents to match supply and demand. These markets can yield a complete mapping of exchanges onto the grid, hence allowing to rethink market–grid interactions.This thesis treats three main challenges which needs to be overcome before considering real world implementations: (i) scalability to host a growing number of distributed users and resources, (ii) compatibility with grid constraints, and (iii) resilience to stochastic power injections. After a complexity analysis, scalability of peer-topeer markets and the proposed negotiation mechanism to solve them is enhanced by three improvements reducing algorithmic and structural complexities. Feasibility of the peer-to-peer electricity market is eventually obtained with the use of network charges. Two approaches are proposed to handle these network charges. The first, exogenous, requires the system operator to provide them a priori before negotiations start. In the second, the system operator updates network charges endogenously at each iteration to better account for the current grid status. Finally, power forecasts of stochastic agents are taken in a more comprehensive way by the developpement of peer-to-peer market on both energy and capacities, used to restore power balance in case of misdipatch due to forecast errors

    Marchés pair-à-pair de l’électricité dans les réseaux électriques

    No full text
    The deployment of distributed energy resources, combined with a more proactive demand side management and energy management systems, is inducing a new paradigm in power system operation and electricity markets. Within a consumercentric market framework, peer-to-peer approaches have gained substantial interest. Peer-to-peer markets rely on multi-bilateral negotiation among all agents to match supply and demand. These markets can yield a complete mapping of exchanges onto the grid, hence allowing to rethink market–grid interactions.This thesis treats three main challenges which needs to be overcome before considering real world implementations: (i) scalability to host a growing number of distributed users and resources, (ii) compatibility with grid constraints, and (iii) resilience to stochastic power injections. After a complexity analysis, scalability of peer-topeer markets and the proposed negotiation mechanism to solve them is enhanced by three improvements reducing algorithmic and structural complexities. Feasibility of the peer-to-peer electricity market is eventually obtained with the use of network charges. Two approaches are proposed to handle these network charges. The first, exogenous, requires the system operator to provide them a priori before negotiations start. In the second, the system operator updates network charges endogenously at each iteration to better account for the current grid status. Finally, power forecasts of stochastic agents are taken in a more comprehensive way by the developpement of peer-to-peer market on both energy and capacities, used to restore power balance in case of misdipatch due to forecast errors.Le déploiement de ressources énergétiques distribuées, combiné à une gestion plus pro-active de la demande et à l'intégration de systèmes de gestion d'énergie, fait entrer l'exploitation des systèmes électriques et des marchés de l'électricité dans un nouveau paradigme. En partie liés à leur structure décentralisée, les marchés dits pair-à-pair ont gagné un intérêt considérable. Les marchés pair-à-pair reposent sur des négociations bilatérales entre les agents pour faire correspondre l'offre et la demande. De plus, ils peuvent cartographier l’ensemble des échanges possibles, ce qui permet de repenser ces interactions avec le réseau.Ces travaux de thèse traitent de trois défis majeurs dont la résolution est essentielle avant d'envisager le passage à des applications réelles : (i) le passage à l'échelle pour gérer un nombre croissant d'acteurs et de ressources distribués, (ii) le respect des contraintes du réseau électrique, et (iii) la résilience du marché à la présence d'agents stochastiques. Une analyse de complexité a permis de montrer que le passage à l’échelle des marchés pair-à-pair et le mécanisme de résolution peut être renforcé par trois améliorations réduisant les complexités algorithmiques et structurelles. Pour le respect des contraintes réseau, le manuscrit propose d’introduire des redevances qui seraient liées à l’utilisation du réseau électrique. Deux approches sont considérées pour déterminer ces redevances réseau. La première, exogène, exige que le gestionnaire de réseau les fournisse a priori avant le début des négociations. Dans la seconde, le gestionnaire de réseau actualise les redevances réseau de manière endogène à chaque itération pour mieux tenir compte de l'état actuel du réseau. Enfin, les prévisions de production et de consommation des agents stochastiques sont mieux prises en compte par la création d’un marché pair-à-pair de l'énergie et des capacités de réserve, pour corriger un éventuel déséquilibre de puissance due à des erreurs de prévision

    Mitigation of Communication Costs in Peer-to-peer Electricity Markets

    No full text
    International audiencePeer-to-peer markets are a promising approach for integrating decentralized generation and prosumers into electricity markets. However, these markets require a very large number of messages to be exchanged in order to find a solution that respects the constraint of power balance in power systems. This study first establishes the shape of the compromise between communication costs and residual power imbalance resulting from a P2P market. Secondly alternative stopping criteria are proposed in order to reduce the cost of communication. The most effective approach is to ratify each trade independently using a threshold on its primary and dual residues, while continuing to negotiate the other trades. With the same residual imbalance, this stopping criterion results in a tenfold reduction of the number of messages exchanged on the basis of a Monte Carlo simulation. This reduction factor seems independent of the number of market participants

    Loss Allocation in Joint Transmission and Distribution Peer-to-Peer Markets

    No full text

    Implémentation asynchrone d'un algorithme de marché de l'électricité pair à pair endogène

    No full text
    International audienceAs the number of actors in the electricity market increases, peer to peer decentralized markets gain interest despite facing two challenges. First, the amount of exchanged messages increase significantly, which makes the resolution dependent on communication delays, as well as computation delays. Second, the physical limitations of the power network are not taken into account. An asynchronous implementation of an endogenous peerto-peer market is here introduced to address these difficulties. The proposed algorithm is tested on a 31 agents testcase and a study of the influence of the various algorithm parameters on the convergence time is performed

    Analyse de la convergence d'un marché pair à pair asynchrone avec délais de communication

    No full text
    International audienceWith the growing number of distributed energy resources, the number of agents partaking in an electricity market is also bound to increase, which highlights the need of a scalable algorithm to clear the market. The interest towards distributed economic dispatch algorithms has grown in the last years as they were found to be scalable, unlike their centralized counterpart. However, these algorithms rely on communication between computational agents during the resolution of the problem. In the case where those computational agents are located far away from each other, the resolution may be impacted by the various hazards that can occur in the communication network. The asynchronous resolution of the algorithm provides a solution to the large variations in communication delays as it allows the agents to carry on with their computation despite not having received every messages from their market partners. This paper focuses on a peer-to-peer market clearing algorithm based on the alternating direction method of multipliers (ADMM) and its asynchronous version. Two communication delay models are introduced in order to study the effect of communication on the convergence of the synchronous and asynchronous versions of the algorithm. In a 110 agent testcase study, we show that the asynchronous resolution can speed up convergence by 40%, while also being more robust to delay variations

    Implémentation asynchrone d'un algorithme de marché de l'électricité décentralisé

    No full text
    International audienceRESUME-Dans un réseau électrique, l'équilibre entre production et consommation d'énergie assure la stabilité du réseau. À travers un marché de l'électricité auquel participent les producteurs et les consommateurs, un consensus est atteint de manière à optimiser les coûts de production tout en respectant la condition d'équilibre des puissances. On s'intéresse dans cet article à la résolution d'un algorithme de marché pair à pair décentralisé. La version asynchrone de cet algorithme est étudiée et comparée à la version synchrone dans un cadre où les échanges de messages se font sur un réseau de communication non idéal, comportant des délais différenciés ainsi que des pertes et retransmissions. On présentera, à travers un cas d'application simple, les paramètres qui permettent une convergence plus rapide de l'algorithme en fonction de l'état du réseau de communication. Mots-clés-marché pair à pair, résolution asynchrone, ADMM, délais de communication, réseau avec pertes
    corecore